If A,B,C are the interior angles of a Δ ABC, show that:
(i) sin B+C2=cosA2
(ii) cos B+C2=sinA2
A+B+C=180
So,
B + C=180-A
B+C2 = 90 - A2 ( Dividing the L.H.S and R.H.S by 2)
sin(B+C2) = sin(90 - A2) ( Substituting B+C2 value)
= cos(A2)
Similarly for second question
cos(90 - A2) = sin(A2)
Hence Proved