wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that BC+CA+AB=0 and deduce that asin A=bsin B=csin C.

Open in App
Solution

We haveBC=a CA=bAB=ca=ab=b ( Length is always positive)c=c Now, BC+CA+AB=0 (Given)a+b+c=0a×a+b+c=a×0a×a+a×b+a×c=00+a×b-c×a=0a×b=c×aa bsin C=c a sin Bab sin C=ca sin BDividing both sides by abc, we getsin Cc=sin Bb ...(1)Again,BC+CA+AB=0a+b+c=0b×a+b+c=b×0b×a+b×b+b×c=0-a×b+0+b×c=0a×b=b×ca b sin C=b c sin Aab sin C=bc sin ADividing both sides by abc, we getsin Cc=sin Aa ...(2)From (1) and (2), we getsin Aa=sin Bb=sin Ccasin A=bsin B=csin C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Napier’s Analogy
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon