Given, x4+px3+qx4+rx+s=0
We know that,
∑a=a+b+c+d=−p…………….(1)
∑ab=ab+ac+ad+bc+bd+cd=q…………….(2)
∑abc=abc+abd+acd+bcd=−r…………….(3)
abcd=s…………….(4)
Now, ∑(bc+cb)=b+c+da+a+c+db+a+b+dc+a+b+cd
⟹∑(bc+cb)=∑a2bcabcd………….(5)
Now, Multiplying ∑a with ∑abc, we get
(a+b+c+d)(abc+abd+acd+bcd)=∑a2bc+4abcd
⟹∑a2bc=∑a∑abc−4abcd=(−p)⋅(−r)–4s=pr–4s
Substituting the value of ∑a2bc in (5), we get
∑(bc+cb)=pr−4ss