Given, x4+px3+qx4+rx+s=0
We know that,
∑a=a+b+c+d=−p…………….(1)
∑ab=ab+ac+ad+bc+bd+cd=q…………….(2)
∑abc=abc+abd+acd+bcd=−r…………….(3)
abcd=s…………….(4)
Squaring ∑ab, we get
(∑ab)2=(ab+ac+ad+bc+bd+cd)2
⟹(∑ab)2=∑a2b2+2(a2bc+a2bd+a2cd+ab2c+ab2d+b2cd+abc2+ac2d+bc2d+abd2+acd2+bcd2)+6abcd
⟹(∑ab)2=∑a2b2+2∑a2bc+6abcd
⟹∑a2b2=(∑ab)2−2∑a2bc−6abcd…………….(5)
Now, Multiplying ∑a with ∑abc, we get
(a+b+c+d)(abc+abd+acd+bcd)=∑a2bc+4abcd
⟹∑a2bc=∑a∑abc−4abcd=(−p)⋅(−r)–4s=pr–4s
Substituting the value of ∑a2bc in (5), we get
∑a2b2=q2−2(pr−4s)–6s=q2–2pr+8s−6s=q2–2pr+2s