x3−px2+qx−r=0
Let the roots of the equation be a,b,c
a+b+c=pab+bc+ca=qabc=r
1. )∑1a2=∑a2b2a2b2c2=(a+b+c)2−2abc(a+b+c)a2b2c2=p2−2prr2
2. )∑1a2b2=(a+b+c)2−2(ab+bc+ac)a2b2c2=p2−2qr2