Given equation, x4+px3+qx2+rx+s=0………………(1)
Let a,b,c,d be the roots of the given equation
(b+c)(c+a)(a+b)=a2b+a2c+ab2+b2c+ac2+bc2+2abc
∴(b+c)(c+a)(a+b)+(b+d)(d+a)(a+b)+(c+d)(d+a)(a+c)+(c+d)(d+b)(b+c)
=2∑a2b+2∑abc
=2(∑a∑ab−3∑abc)+2∑abc
=2∑a∑ab−4∑abc
=−2pq+4r