x3+qx+r=0
Let the roots be a,b,c
a+b+c=0ab+bc+ca=qabc=−r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(a−b)2+(b−c)2+(c−a)2=2(a2+b2+c2)−2(ab+bc+ac)=2{(a+b+c)2−2(ab+bc+ac)}−2(ab+bc+ac)=2(a+b+c)2−6(ab+bc+ac)=0−6q=−6q
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b+c)−1+(c+a)−1+(a+b)−1=∑1b+c
As a+b+c=0
⇒∑1b+c=−∑1a=−ab+bc+acabc=−q−r=qr