If a,b,c are the sides of a triangle ABC such that x2−2(a+b+c)x+3λ(ab+bc+ca)=0 has real roots, then
λ<43
Since, roots are real, therefore D≥0
⇒4(a+b+c)2−12λ(ab+bc+ca)≥0
⇒(a+b+c)2≥3λ(ab+bc+ca)
⇒a2+b2+c2≥(ab+bc+ca)(3λ−2)
⇒3λ−2≤a2+b2+c2ab+bc+ca
Also, cos A=b2+c2−a22bc<1
⇒b2+c2−a2<2bc
Similarly, c2+a2−b2<2ca
And a2+b2−c2<2ab
⇒a2+b2+c2<2(ab+bc+ca)
⇒a2+b2+c2ab+bc+ca<2
From Eqs. (i) and (ii) we get
3λ−2<2⇒λ<43