If a, b, c are the sides of a triangle ABC such that x2−2(a+b+c)x+3λ(ab+bc+ca)=0 has two distinct real roots, then
λ<43
Since, roots are real, therefore D>0
⇒4(a+b+c)2−12λ(ab+bc+ca)>0⇒(a+b+c)2>3λ(ab+bc+ca)⇒a2+b2+c2>(ab+bc+ca)(3λ−2)⇒3λ−2<a2+b2+c2ab+bc+ca....(i)
Also, cosA=b2+c2−a22bc≤1.
⇒b2+c2−a2≤2bc
Similarly, c2+a2−b2≤2ca
and a2+b2−c2≤2ab
⇒a2+b2+c2≤2(ab+bc+ca)⇒a2+b2+c2ab+bc+ca≤2.....(ii)
From Eqs. (i)and (ii), we get
3λ−2<2⇒λ<43