The correct option is A True
Since a, b, c are the sides of the triangle we have a, b, c > 0 and we know that the sum of any two sides of a triangle is greater than the third side.
⇒ a+b-c, b+c-a, c+a-b are all positive.
Applying AM≥GM to the quantities.
a b c
c+a -b , a+b-c, b+c-a
we have ac+a−b+ba+b−c+cb+c−a
⩾33√abc(c+a−b)(a+b−c)(b+c−a)
We have
a2⩾a2−(b−c)2
or a2⩾(a+b−c)(a−b+c)
Similarly
b2⩾(b+c−a)(b−c+a)
c2⩾(c+a−b))(c−a+b))
Multiplying together we get
a2b2c2⩾(a+b−c)2(b+c−a)2(c+a−b)2
Taking he positive root both sides we have
abc⩾(a+b−c)(b+c−a)(c+a−b)
⇒abc(a+b−c)(b+c−a)(c+a−b)⩾1
⇒3√abc(a+b−c)(b+c−a)(c+a−b)⩾1
⇒ac+a−b+ba+b−c+cb+c−a⩾3