As a2,b2,c2 are roots of x3−px2+qx−k=0
Gives
a2+b2+c2=pa2b2+b2c2+a2c2=qa2b2c2=k
A) cosAa+cosBb+cosCc=12⇒−a2+b2+c22abc+a2−b2+c22abc+a2+b2−c22abc=12
p2√k=12⇒p=k2
B) acosA+bcosB+ccosC=0⇒a(−a2+b2+c22bc)+b(a2−b2+c22ac)+c(a2+b2−c22ab)=0
⇒4q−p22√k=0⇒4q=p2
C) sin2A+sin2B+sin2C=0⇒2sinAcosA+2sinBcosB+2sinCcosC=0
Substituting sinAa=sinBb=sinCc=12R, we get
1R(acosA+bcosB+ccosC)=0⇒4q−p22√k=0⇒4q=p2
D) asinA+bsinB+csinC=2△⇒12R(a2+b2+c2)=2△⇒2p△√k=2△⇒p=k2