wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b, c are the sides of the triangle ABC and a2,b2,c2 are the roots of x3px2+qxk=0

Open in App
Solution

As a2,b2,c2 are roots of x3px2+qxk=0
Gives
a2+b2+c2=pa2b2+b2c2+a2c2=qa2b2c2=k
A) cosAa+cosBb+cosCc=12a2+b2+c22abc+a2b2+c22abc+a2+b2c22abc=12
p2k=12p=k2
B) acosA+bcosB+ccosC=0a(a2+b2+c22bc)+b(a2b2+c22ac)+c(a2+b2c22ab)=0
4qp22k=04q=p2
C) sin2A+sin2B+sin2C=02sinAcosA+2sinBcosB+2sinCcosC=0
Substituting sinAa=sinBb=sinCc=12R, we get
1R(acosA+bcosB+ccosC)=04qp22k=04q=p2
D) asinA+bsinB+csinC=212R(a2+b2+c2)=22pk=2p=k2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation of Roots and Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon