Simplification the given data
Consider B∪C=E
P(A∪B∪C)=P(A∪E)
As we know that
P(A∪E)=P(A)+P(E)−P(A∩E)
Now,
P(A∪B∪C)=P(A∪E)
⇒P(A∪B∪C)=P(A)+P(E)−P(A∩E)
⇒P(A∪B∪C)=P(A)+P(E)−P(A∩(B∪C))
⇒P(A∪B∪C)=P(A)+P(E)−P((A∩B)∪(A∩C)).....(i)
We need to find P(E) & P((A∩B)∪(A∩C))
Finding P(E) and P(A∩B)∪(A∩C))
P(E)=P(B∪C)=P(B)+P(C)−P(B∩C)........(ii)
We know that
P(A∪B)=P(A)+P(B)−P(A∩B)
Putting A=(A∩B) & B=(A∩C) then we get,
P((A∩B)∪(A∩C))=P(A∩B)+P(A∩C)−P((A∩B)∩(A∩C))
P((A∩B)∪(A∩C))=P(A∩B)+P(A∩C)−P(A∩B∩C)....(iii)
Putting (ii) & (iii) in (i) then we get,
P(A∪B∪C)=P(A)+[P(B)+P(C)−P(B∩C)]−[P(A∩B)+P(A∩C)−P(A∩B∩C)]
=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)