If a, b, c are unit vectors such that a + b + c = 0, then find the value of a.b + b.c + c.a
Given, |a| = |b| = |c| = 1 and a + b + c = 0
We have (a + b + c). (a + b + c) = 0
⇒a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=0
⇒a.a+a.b+a.c+b.a+b.b+b.c+c.a+c.b+c.c=0
⇒|a|2+|b|2+|c|2+2(a.b+b.c+c.a)=0
(∵a.a=|a|2 and a.b=b.a)
⇒1+1+1+2(a.b+b.c+c.a)=0 (∵|a|=|b|=|c|=1
⇒3+2(a.b+b.c+c.a)=0
⇒a.b+b.c+c.a=−32