If a,bandcareinA.P, then (a-c)2b2-acis
1
2
3
4
Explanation for the correct option:
Finding the value:
As a,bandcareinA.P
∴b=a+c2
Now to find the value of (a-c)2b2-ac, putting the value of b, we get
(a-c)2b2-ac=(a-c)2(a+c2)2-ac=4(a-c)2(a+c)2-4ac=4(a-c)2a2+c2+2ac-4ac=4(a-c)2a2+c2-2ac=4(a-c)2(a-c)2=4
Hence, the correct option is (D).
If a, b, c are in A.P., then (b+c)2-a2, (a+c)2 -b2, (a+b)2 -c2 are in....