The correct option is
B 32Given a,b,c are in GP and
logca,logbc,logab are in AP
Let r be the common ratio, then b=a,c=ar2(1)
and logca,logbc,logab are in AP
i.e. logalogc,logclogb,logbloga are in AP
From (1) logalog(ar2),log(ar2)log(ar),log(ar)loga are in AP
logaloga+2logr,loga+2logrloga+logr,loga+logrloga are in AP
Put logrloga=x we get
11+2x,1+2x1+x,1+x are in AP
2(1+2x)(1+x)=(1+x)+1(1+2x)2x3−3x2−3x=0x=14(3+√3)(2)2d=(1+x)−11+2x
From (2) 2d=3⇒d=32