If a,b,c be positive, then minimum value of b+ca + c+ab + a+bc is
Since Arithmetic mean ≥ Geometric mean
ab+ba2 ≥ √ab.ba
⇒ ab+ba ≥ 2 -----------------(1)
Similarly, bc+cb ≥ 2 ------------------(2)
and ca+ac ≥ 2 -------------------(3)
Adding the corresponding sides of (1),(2) and (3),
(ab+ba) + (bc+cb) + (ca+ac) ≥ 6
(or) (ba+ca) + (cb+ab) + (ac+bc) ≥ 6
⇒ b+ca + c+ab + a+bc ≥ 6
So, the minimum value is 6.