wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A, B, C be the angles of a triangle, then prove that
∣ ∣1cosCcosBcosC1cosAcosBcosA1∣ ∣ = 0

Open in App
Solution

In a triangle
cos(A+B) = cos (\pi-C) = - cosC ....(1)
cosAcosB+cosC= sinAsinB etc.
sin(A+B) = sinC etc.
Expanding the given determinant, we get
=(1cos2A)+cosC[cosC+cosAcosB]+cosB[cosB+cosAcosC]
=sin2A+cosC(sinAsinB)+cosB(sinAsinC)
=sin2A+sinAsin(B+C)
=sin2A+sin2A=0.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon