If A, B, C be the angles of a triangle, then prove that ∣∣
∣∣−1cosCcosBcosC−1cosAcosBcosA−1∣∣
∣∣ = 0
Open in App
Solution
In a triangle cos(A+B) = cos (\pi-C) = - cosC ....(1) ∴ cosAcosB+cosC= sinAsinB etc. sin(A+B) = sinC etc. Expanding the given determinant, we get △=−(1−cos2A)+cosC[cosC+cosAcosB]+cosB[cosB+cosAcosC] =−sin2A+cosC(sinAsinB)+cosB(sinAsinC) =−sin2A+sinAsin(B+C) =−sin2A+sin2A=0.