If A, B, C be the angles of a triangle, then which of the following hold good?
A
cotA.cotB.cotC≤13√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cotA2cotB2cotC2≥3√(3)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cosA+cosB+cosC<32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin(A2)sin(B2)sin(C2)≤18
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AcotA.cotB.cotC≤13√3 BcotA2cotB2cotC2≥3√(3) CcosA+cosB+cosC<32 Dsin(A2)sin(B2)sin(C2)≤18 All the four hold good (a) We know that when A+B+C=π then tan(A+B+C)=tanπ=0 or S1−S31−S2=0∴S1=S3 or tanA+tanB+tanC=tanAtanBtanC……(1) Now tanA+tanB+tanC≥3(tanAtanBtanC)13 or (tanAtanBtanC)3≥27tanAtanBtanC or tanAtanBtanC≥3√3 or cotAcotBcotC≤13√3……(2)
(b) Again A2+B2+C2=π2 ∴tan(A2+B2+C2)=∞ =S1−S31−S2=∞ ∴1−S2=0 or ∑tan(A2)tan(B2)=1 or on dividing by tan(A2)tan(B2)tan(C2), we get cot(A2)+cot(B2)+cot(C2) =cot(A2)+cot(B2)+cot(C2)……(1) Now proceed as in part (a) for result (1)
(c) We have cosA+cosB+cosC =2cosA+B2cosA−B2+cosC =2sinC2cosA−B2+cosC≤2sinC2+cosC [∵0≤cosA+B2≤1] =2sinC2+1−2sin2C2 =−2[(sinC2−12)2−14]+1 =32−2(sinC2−12)2≤32
(d) We know from trigonometry that cosA+cosB+cosC=1+4sinA2sinB2sinC2≤32 by (c) ∴4sinA2sinB2sinC2≤32−1=12 ∴sinA2sinB2sinC2≤18