Expand the determinant w.r.t. Its row
Δ=cos(A−B)sin(C+A−B−C)+...+...
=cos(A−B)sin(A−B)+...+...
=12[sin(2A−2B)+sin(2B−2C)+sin(2C−2A)]
=12(−4)sin(A−B)sin(B−C)sin(C−A),
=−2sin(A−B)sin(B−C)sin(C−A)=0
⇒ either A=B or B=C or C=A
i.e. if A,B,C be the angles of a triangle then the triangle must be isosceles.