If a, b, c be the lengths of the sides of a triangle, then (a+b+c)3 ≥ 27(a+b-c)(b+c-a)(c+a-b)
True
Since the sum of 2 sides of a triangle is greater than the 3rd side, We have
a + b > c (or) a + b - c > 0
b + c > a (or) b + c - a > 0
c + a > b (or) a + c - b > 0
Applying A.M of 3 quantities ≥ G.M of 3 quantities
(a+b−c)+(b+c−a)+(a+c−b)3 ≥{(a+b−c)(b+c−a)(a+c−b)}13
a+b+c3 ≥ [(a+b−c)(b+c−a)(a+c−b)]13
(a+b+c)3 ≥ 27 (a+b-c) (b+c-a) (c+a-b)