The correct option is B False
a,b,c are sides of triangle.
∴a+b>c,b+c>a,c+a>b
∴a>|b−c|,b>|c−a|,c>|a−b|
square and add, we get
⇒a2+b2+c2<2(ab+bc+ca)
⇒a2+b2+c2+2(ab+bc+ca)<4(ab+bc+ca)
⇒(a+b+c)2ab+bc+ca<4
⇒P<4
Again, (a−b)2+(b−c)2+(c−a)2≥0
⇒(a+b+c)2ab+bc+ca≥3
⇒P≥3
∴3≤P<4
or P∈[3,4)