The correct option is C H.P
∵a(b−c)+b(c−a)+c(a−b)=0
∴x=1 is a root of the equation.
a(b−c)x2+b(c−a)x+c(a−b)=0
Then the other root =1
∵roots are equal.
∵|x|=c(a−b)a(b−c)
⇒ab−ac=ca−cb
⇒b=2aca+c
∴a,b,c are in H.P.
⇒1a,1b,1c are in A.P
⇒sa,sb,sc are in A.P
⇒sa−1,sb−1,sc−1 are in A.P
⇒s−aa,s−bb,s−cc are in A.P
Multiplying in each by abc(s−a)(s−b)(s−c) then
⇒bc(s−b)(s−c),ca(s−a)(s−c),ab(s−a)(s−b) are in A.P
⇒(s−b)(s−c)bc,(s−a)(s−c)ca,(s−a)(s−b)ab are in H.P
⇒sin2(A2),sin2(B2),sin2(C2) are in H.P.