wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C+D=2π, show that cosAcosB+cosCcosD=4sinA+B2sinA+D2cosA+C2.

Open in App
Solution

A+B+C+D=2π
L.H.S. =(cosA+cosC)(cosB+cosD)
=2cosA+C2cosAC22cosB+D2cosBD2
Now B+D2=πA+C2,
cosB+D2=cosA+C2
L.H.S. =2cosA+C2[cosAC2+cosBD2]
=2cos(A+C2)[2cos(A+BCD4)cos(A+DCB4)] (1)
Now C+D=2π(A+B),C+B=2π(A+D)
(A+B)(CD)4=(A+B)2π+(A+B)4
=A+B2π2
cos(A+B)(C+D)4=cos(A+B2π2)=sinA+B2 ..(2)
Again (A+D)(C+B)4=(A+D)2π+(A+D)4=(A+D2π2)
cosA+DCB4=cos(A+D2π2)=sinA+D2 .(3)
Hence from (1) with the help of (2) and (3), we get L.H.S. =4cosA+C2sinA+B2sinA+D2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon