A+B+C+D=2π
L.H.S. =(cosA+cosC)−(cosB+cosD)
=2cosA+C2cosA−C2−2cosB+D2cosB−D2
Now B+D2=π−A+C2,
∴cosB+D2=−cosA+C2
∴ L.H.S. =2cosA+C2[cosA−C2+cosB−D2]
=2cos(A+C2)[2cos(A+B−C−D4)cos(A+D−C−B4)] (1)
Now C+D=2π−(A+B),C+B=2π−(A+D)
∴(A+B)−(C−D)4=(A+B)−2π+(A+B)4
=A+B2−π2
∴cos(A+B)−(C+D)4=cos(A+B2−π2)=sinA+B2 ..(2)
Again (A+D)−(C+B)4=(A+D)−2π+(A+D)4=(A+D2−π2)
∴cosA+D−C−B4=cos(A+D2−π2)=sinA+D2 .(3)
Hence from (1) with the help of (2) and (3), we get L.H.S. =4cosA+C2⋅sinA+B2⋅sinA+D2.