If (a + b +c + d) (a -b- c+ d)
=(a + b- c- d) (a -b+c- d);
prove that : a : b =c : d.
Given
(a + b +c + d) (a -b- c+ d) =(a + b - c - d) (a -b+c- d)
(a+b+c+d)(a+b−c−d) =(a+b−c−d)(a−b−c+d)
Applying componendo and dividendo,
we get
=>2(a+b)2(c+d) = 2(a−b)2(c−d)
=>(a+b)(c+d) = (a−b)(c−d)
=>(a+b)(a−b) = (c+d)c−d
applying componendo and dividendo
=>a+b+a−ba+b−a+b = c+d+c−dc+d−c+d
=>2a2b =2c2d
=>ab = cd
Hence prove
a:b = c:d