(a2+b2+c2)p2−2(ab+bc+cd)p+(b2+c2+d2)≤0,
⇒a2p2+b2p2+c2p2−2abp−2bcp−2cdp+b2+c2+d2≤0
⇒(ap)2+b2−2abp+(bp)2+c2−2bcp+(cp)2+d2−2cdp≤0
⇒[(ap)2+(b)2−2×ap×b]+[(bp)2+(c)2−2×bp×c]+[(cp)2+(d)2−2×cp×d]
⇒(ap−b)2+(bp−c)2+(cp−d)2≤0
Square of a real number is zero or always positive So, sum of square of real number
is zero or always positive
∴(ap−b)2+(bp−c)2+(cp−d)2=0
(ap−b)2+(bp−c)2+(cp−d)2=0
Thus,(ap−b)=0,(bp−c)=0 & (cp−d)=0
(ap−b)=0⇒ap=b
⇒ba=p...(i)
(bp−c)=0⇒bp=c
⇒cb=p...(ii)
(cp−d)0⇒cp=d
⇒dc=p ..(iii)
From (i),(ii)&(iii)
ba=cb=dc=p (common ratio)
Hence, a,b,c and d are in G.P