If A,B,C,D are any four points in space, then ∣∣∣−−→AB×−−→CD+−−→BC×−−→AD+−−→CA×−−→BD∣∣∣=m×Area of △ABC. Find m.
Open in App
Solution
→a,→b,→c,→d be the position vectors of A,B,C,D △ABC=12∣∣∣(−−→AB×−−→AC)∣∣∣ =12∣∣∣→a×→b+→b×→c+→c×→a∣∣∣ Again ∣∣∣−−→AB×−−→CD+−−→BC×−−→AD+−−→CA×−−→BD∣∣∣ =∣∣∣(→b−→a)×(→d−→c)+(→c−→b)×(→d−→a)+(→a−→c)×(→d−→b)∣∣∣ =2∣∣∣→b×→c+→c×→a+→a×→b∣∣∣ =4× Area of △ABC