The correct option is B real and distinct
Since, a,b,c,d are in A.P.
Let a=m−n, b=m, c=m+n, d=m+2n,
where, n≠0
(x−a)(x−c)+2(x−b)(x−d)=0
⇒3x2−x(a+c+2b+2d)+ac+2bd=0
⇒3x2−x(m−n+m+n+2m+2m+2n)+(m−n)(m+n)+2(m)(m+2n)=0
⇒3x2−2x(3m+2n)+3m2+4mn−n2=0
Now, D=b2−4ac=4[(3m+2n)2−3(3m2+4mn−n2)]=28n2>0
Therefore, roots are real and distinct.
Ans: A