Given : a,b,c,d are in an A.P.
Assuming the common difference be D,
Now,
2(a−b)+k(b−c)2+(c−a)3=2(a−d)+(b−d)2+(c−d)3⇒2(−D)+k(−D)2+(2D)3=2(−3D)+(−2D)2+(−D)3⇒4D+(k−4)D2+9D3=0⇒D(9D2+(k−4)D+4)=0
As a,b,c,d are distinct, so D≠0
⇒9D2+(k−4)D+4=0
As D∈R
⇒(k−4)2−4(4)(9)≥0⇒k2−8k−128≥0⇒(k−16)(k+8)≥0⇒k∈(−∞,−8]∪[16,∞)
Hence, the smallest positive value of k is 16.