If a, b, c, d are in G.P., prove that (an+bn), (bn+cn), (cn+dn) are in G.P.
∵ a, b, c are in G.P.
Let ba=cb=dc=k
∴ba=k⇒b=ak
Also, cb=k⇒c=bk=(ak).k=ak2
and dc=k⇒d=ck=(ak2).k=ak3
Now, to prove that (an+bn), (bn+cn), (cn+dn) in G.P., we have:
bn+cnan+bn=cn+dnbn+cn
Now, bn+cnan+bn=(ak)n+(ak2)nan+(ak)n
=ankn+ank2nan+ankn
=ankn(1+kn)an(1+kn)
=anknan=kn
Also, cn+dnbn+cn=(ak2)n+(ak3)n(ak)n+(ak2)n
=ank2n+ank3nankn+ank2n
=ankn+ank2nan+ankn
=ankn(1+kn)an(1+kn)
=anknan=kn
Also, cn+dnbn+cn=(ak2)n+(ak3)n(ak)n+(ak2)n
=ank2n+ank3nankn+ank2n
=ank2n(1+kn)ankn(1+kn)
=ank2nankn=kn
∴bn+cnan+bn=cn+dnbn+cn
This shows that (an+bn), (bn+cn), (cn+dn) are in G.P.