Step 1: Simplify Given data.
Given, a,b,c and d are in G.P.
So,
∴b2=ac ...(i)
c2=bd ...(ii)
ad=bc ...(iii)
Step 2: Solve for prove.
Required to prove
(an+bn), (bn+cn), (cn+an) are in G.P. i.e.,
(bn+cn)2=(an+bn)(cn+dn)
Taking L.H.S
(bn+cn)2=b2n+2bnCn+C2n
⇒ L.H.S.=(b2)n+2b2cn+(c2)n
⇒ L.H.S.=(ac)n+2bncn+(bd)n [ Using (i) and (ii) ]
⇒ L.H.S.=ancn+bncn+bncn+bndn
=ancn+bncn+andn+bndn [using (iii)]
=cn(an+bn)+dn(an+bn)
=(an+bn)(cn+dn)
=R.H.S
Therefore, (an+bn),(bn+cn),and (cn+dn) are in G.P.
Hence proved.