a=a, b=ar, c=ar2 and d=ar3.
Putting the values on the LHS of ab−cdb2−c2=a+cb
ab−cdb2−c2=a(ar)−(ar2)(ar3)(ar)2−(ar2)2
=a2r−a2r5a2r2−a2r4
=a2r(1−r4)a2r2(1−r2)
=(1)2−(r2)2r(1−r2)
=(1−r2)(1+r2)r(1−r2)
=1+r2r
Now putting the values in RHS of ab−cdb2−c2=a+cb
a+cb=a+ar2ar
=a(1+r2)ar
=1+r2r
Therefore, LHS=RHS.
Hence proved.