If a, b, c, d are in G.p., prove that :
(i) (a2+b2),(b2+c2),(c2+d)2 are in G.P.
(ii) (a2−b2),(b2−c2),(c2−d)2 are in G.P.
(iii) 1a2+b2,1b2+c2,1c2+d2 are in G.P.
(iv) (a2+b2+c2),(ab+bc+cd),(b2+c2+d2)
(i) a, b, c, d are in G.P.
∴ a = a, b = ar, c = ar2, d =ar3
Now,
(b2+c2)2=(a2+b2)(c2+d2)
(a2r2+a2r4)2=(a2+a2r2)(a2r4+a2r6)
a4(r2+r4)2=a2(1+r2)a2r2(1+r2)
a4a4(1+r2)2=(a2+b2)(c2+d2)
⇒(a2+b2),(b2+c2),(c2+d2) are in G.P.
(ii) a, b, c, d are in G.P.
a, b = ar, c = ar2, d = ar3
Now,
(b2−c2)2=(a2−b2)(c2−d2)
(a2r2−a2r4)2=(a2−a2r2)(a2r4−a2r6)
a4(r2−r4)2=a2(1−r2)a2r2(1−r2)
a4a4(1−r2)2=a4r4(1−r2)2
LHS = RHS
⇒(b2−c2)2=(a2−b2)(c2−d2)
⇒(a2−b2),(b2−c2),(c2−d2) are in G.P.
(iii) a, b, c, d are in G.P.
a, b = ar, c = ar2, d = ar3
Now,
(1b2+c2)2=(1a2+b2)(1c2+d2)
(1a2r2+a2r4)2=(1a2+a2r2)(1a2r4+a2r6)
1a4(r2+r4)2=1a2(1+r2)×1a2(1+r6)
1a4r4(1+r2)2=1a2r4(1+r2)(1+r2)
1a4r4(1+r2)2=1a2r4(1+r2)2
LHS = RHS
⇒(1b2+c2)2=(1a2+b2)(1c2+d2)
⇒(1a2+b2),(1b2+c2),(1c2+d2) are in G.P.
(iv) a, b, c, d are in G.P.
a, b = ar, c = ar2, d = ar3
Now,
(ab+bc+cd)2=(a2+b2+c2)(b2+c2+d2)
(a2r+a2r3+a2r5)=(a2+a2r2+a2r4)(a2+a2r4+a2r6)
a4(r+r3+r5)2=a2(1+r2+r4)a2r4(1+r2+r4)
a2r4(1+r2+r4)2=a4r2(1+r2+r4)2
LHS = RHS
⇒(ab+bc+cd)2=(a2+b2+c2)(b2+c2+d2)
⇒(a2+b2+c2),(ab+bc+cd),(b2+c2+d2) are in G.P.