wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b, c, d are in G.P., prove that:

(i) ab-cdb2-c2=a+cb

(ii) (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2

(iii) (b + c) (b + d) = (c + a) (c + d)

Open in App
Solution

a, b, c and d are in G.P.

b2=acbc=adc2=bd .......(1)

(i) LHS=ab-cdb2-c2=ab-cdac-bd Using (1)=ab-cdbac-bdb =ab2-bcdac-bdb=aac-cc2ac-bdb Using (1)=a2c-c3ac-bdb=ca2-c2ac-bdb=a+cac-c2ac-bdb=a+cac-bdac-bdb Using (1)=a+cb=RHS

(ii) LHS=a+b+c+d2=a+b2+2a+bc+d+c+d2=a+b2+2ac+ad+bc+bd+c+d2=a+b2+2b2+bc+bc+c2+c+d2 Using (1)=a+b2+2b+c2+c+d2=RHS

(iii) LHS=b+cb+d=b2+bd+bc+cd=ac+c2+ad+cd Using (1)=ca+c+da+c=c+ac+d = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Product of Binomial Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon