If a, b, c, d are in G.P., prove that :
(i) ab−cdb2−c2=a+cb
(ii) (a+b+c+d)2=(a+b)2+2(b+c)2+(c+d)2
(iii) (b+c)(b+d)=(c+d)(c+d)
(i) ab−cdb2−c2=a+cb
Since, a, b, c are in G.P.
∴a=a,b=ar,c=ar2,d=ar3
Given, ab−cdb2−c2=a+cb
a(ar)−(ar2)(ar3)a2r2−a2r4=a+ar2ar
a2r−a2r5a2r2(1−r2)=a(1+r2)ar
a2r(1−r4)a2r2(1−r2)=a(1+r2)ar
[(1)2−(r2)][(1)2+(r2)]r(1−r2)=(1+r2)r
→1+r2r=1+r2r
LHS = RHS
(ii) (a+b+c+d)2=(a+b)2+2(b+c)2+(c+d)2
Since, a, b, c are in G.P.
a = a, b = ar, c = ar2, d = ar3
∴ Given (a+b+c+d)2=(a+b)2+2(b+c)2+(c+d)2
⇒(a+ar+ar2+ar3)2=(a+ar)2+2(ar+ar2)2+(ar2+ar3)2
⇒a2(1+r+r2+r3)2=a2[(1+r)2+2(r+r2)2+(r2+r3)2]
⇒(1+r+r2+r3)2=1+r2+2r+2(r2+r4+2r3)+r4+r6+2r5
⇒(1+r+r2+r3+r+r2+r3+r4+r2+r3+r4+r5+r3+r4+r5+r6)
=1+r2+2r+2r2+2r4+4r3+r4+r6+2r5
=⇒(r6+2r5+3r4+4r3+3r2+2r+1)
=r6+2r5+3r4+4r3+3r2+2r+1
LHS = RHS
(iii) Since, a, b, c are in G.P.
∴ a = a, b = ar, c = ar2, d = ar3
(b+c)(b+d)=(c+a)(c+d)
⇒(ar+ar2)(ar+ar3)=(ar2+a)(ar2+ar3)
⇒a2(r+r2)(r+r3)=a2(r2+1)(r2+r3)
⇒r2(1+r)(1+r2)=r2(1+r2)(1+r)
∴ LHS = RHS