wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b, c, d are in proportion , then prove that

(i) 11a2 + 9ac11b2 + 9bd= a2 + 3acb2 + 3bd


(ii) a2 + 5c2b2 + 5d2= ab



(iii) a2 + ab + b2a2 - ab + b2= c2 +cd+ d2c2 -cd+ d2

Open in App
Solution


It is given that a, b, c, d are in proportion.

ab=cd=ka=bk, c=dk
(i)
11a2+9ac11b2+9bd=11bk2+9×bk×dk11b2+9bd=k211b2+9bd11b2+9bd=k2 .....1a2+3acb2+3bd=bk2+3×bk×dkb2+3bd=k2b2+3bdb2+3bd=k2 .....2
From (1) and (2), we get

11a2+9ac11b2+9bd=a2+3acb2+3bd

(ii)
a2+5c2b2+5d2=bk2+5dk2b2+5d2=k2b2+5d2b2+5d2=k2=k .....1ab=bkb=k .....2
From (1) and (2), we get

a2+5c2b2+5d2=ab

(iii)
a2+ab+b2a2-ab+b2=bk2+bk×b+b2bk2-bk×b+b2=b2k2+k+1b2k2-k+1=k2+k+1k2-k+1 .....1c2+cd+d2c2-cd+d2=dk2+dk×d+d2dk2-dk×d+d2=d2k2+k+1d2k2-k+1=k2+k+1k2-k+1 .....2
From (1) and (2), we get

a2+ab+b2a2-ab+b2=c2+cd+d2c2-cd+d2

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Proportion
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon