wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,c,d are positive and are the pth,qth,rth terms respectively of a G.P. show without expanding that,
∣ ∣logap1logbq1logcr1∣ ∣=0

Open in App
Solution

Let A be the first term and R be the common ratio of G.P., then
a= pth terms =ARp1
loga=logA+(p1)logR
b= qth term =ARq1
logb=logA+(q1)logR
c= rth term =ARr1
logc=logA+(r1)logR
Consider, ∣ ∣logap1logbq1logcr1∣ ∣
=∣ ∣ ∣logA+(p1)logRp1logA+(q1)logRq1logA+(r1)logRr1∣ ∣ ∣
=∣ ∣logAp1logAq1logAr1∣ ∣+∣ ∣ ∣(p1)logRp1(q1)logRq1(r1)logRr1∣ ∣ ∣
=logA∣ ∣1p11q11r1∣ ∣+logR∣ ∣ ∣(p1)p1(q1)q1(r1)r1∣ ∣ ∣
=logR∣ ∣ ∣(p1)p1(q1)q1(r1)r1∣ ∣ ∣
Applying C1C1logAC3
=∣ ∣ ∣(p1)logRp1(q1)logRq1(r1)logRr1∣ ∣ ∣
=logR∣ ∣ ∣(p1)p1(q1)q1(r1)r1∣ ∣ ∣
Applying C2C2C3
=logR∣ ∣ ∣(p1)p11(q1)q11(r1)r11∣ ∣ ∣
=0 (Since C1 & C2 identical)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon