If a,b,c,d are positive real numbers (a > c), then value of d that minimize the expression √a2+d2+√(b−d)2+c2 is / are
f(d)=√a2+d2+ √(b−d)2+c2
f(d)is minimum where f′(d)=0
f′(d)=d√a2+d2+2d−2b2√b2+d2+c2−2bd=0
⇒d.√b2+d2+c2−2bd+ (b−d)√a2+d2=0
d2(b2+d2+c2−2bd)=(b2+d2−2bd)(a2+d2)
b2d2+d4+d2c2−2bd3=a2d2+a2b2−2a2bd+d4+b2d2−2bd3
d2(c2−a2)+(2a2b)d−a2b2=0
d=−2a2b±√4a4b2+4(a2b2)(c2−a2)2(c2−a2)
=−2a2b±2abc2(c2−a2)
d=−ab(a+c)c2−a2 , −ab(a−c)c2−a2
d= aba−c , aba+c
Hence, the answer is aba−c