Given equation, x4+px3+qx2+rx+s=0………………(1)
Let a,b,c,d be the roots of the given equation
(∑a2)2=∑a4+2∑a2b2
⟹∑a4=(∑a2)2−2∑a2b2…………….(2)
(∑a)2=∑a2+2∑ab
⟹∑a2=(∑a)2−2∑ab………….(3)
(∑ab)2=∑a2b2+2∑a2bc+6abcd
⟹∑a2b2=(∑ab)2−2∑a2bc−6abcd……….(4)
∑a∑ab=∑a2bc+3abcd
⟹∑a2bc=∑a∑ab–3abcd……….(5)
Using (2), (3), (4) and (5), we have
∑a4=((∑a)2–2∑ab)2–2((∑ab)2–2∑a∑ab)
=((−p)2−2q)2–2((q)2–2(−p)q)
=p4+4q2−4p2q−2q2−4pq
=p4+2q2−4p2q−4pq