sinA=sinB=sinC=sinD=K
B=π−A=B2=π2−A2
C=2π+A=C2=π+A2
D=3π−A=D2=3π2−A2
Now 4sinA2+3sinB2+2sinC2+sinD2
4sinA2+3cosA2+2sinA2−cosA2
2sinA2+2cosA2
2(sinA2+cosA2)
2√(sinA2+cosA2)2
2√sin2A2+cos2A2+sinA
2√1+sinA
2√1+K
If α.β,γ,δ are the smallest positive angles in ascending order of magnitude which have their sines equal to positive quantity k, then the value of 4 sin (α2)+3 sin (β2)+2 sin (γ2)+sin (δ2) is not equal to