If A,B,C,D be the angles of a cyclic quadrilateral, taken in order, prove that: cos(180∘−A)+cos(180∘+B)−sin(90∘+D)=0
∵A,B,C,D are the angles of a cyclic quadrilateral in order,
A+C=πandB+D=π
⇒π−A=Candπ−D=B
⇒cos(π−A)=cosC....(i)
⇒ and cos (π−D)=cosB....(ii)
Now, cos(180∘−A)+cos(180∘+B)+(180∘+C)−sin(90∘+D)
=cosC+(−cosB)−cosC−cosD
[∵cos(180∘+B)=−cosB,cos(180∘+C)=−cosC and using (i)]
=-cos B -cos D
=-cos B -(-cos B)[using (ii)]
=-cos B +cos B
=0
Hence proved.