a,b,c,d,e are in continued proportion,
⇒ab=bc=cd=de=k⇒a=bk,b=ck,c=dk,d=ek
We need to prove (ab+bc+cd+de)2=(a2+b2+c2+d2)(b2+c2+d2+e2) ....(1)
Substituting the values of a,b,c,d in (1)
⇒(b2k+c2k+d2k+e2k)2=((bk)2+(ck)2+(dk)2+(ek)2)(b2+c2+d2+e2)⇒k2(b2+c2+d2+e2)2=k2(b2+c2+d2+e2)(b2+c2+d2+e2)⇒(b2+c2+d2+e2)2=(b2+c2+d2+e2)2
As LHS = RHS
Hence, proved.