Here, x5+ax4+bx3+cx2+dx+e=0 has real roots α1, α2, α3, α4, α5.
⇒ α1+α2+α3+α4+α5=∑αi=−a
∑i<jαiαj=b (i)
(∑αi)2=a2 (ii)
⇒ ∑α2i+2\left ( \sum_{i< j}\alpha _{i}\alpha _{j} \right )=a^{2}(iii)\Rightarrow \left ( \sum \alpha _{i}^{2} \right )=a^{2}-2b[fromEqs.(i),(ii)and(iii)]Asweknow,\displaystyle \left ( \frac{\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+\alpha _{4}^{2}+\alpha _{5}^{2}}{5} \right )\geq \left ( \frac{\alpha _{1}+\alpha _{2}+\alpha _{3}+\alpha _{4}+\alpha _{5}}{5} \right )^{2}(knownasTchebycheff′sinequality)\Rightarrow 5\left ( a^{2}-2b \right )\geq a^{2}or4a^{2}\geq 10bor2a^{2}\geq 5b(forrealroots)Thus,if2a^{2}< 5b$ cannot all be real roots.