wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,c,d,e are real numbers,show that the roots of x5+ax4+bx3+cx2+dx+e=0 cannot all be real, if 2a2<5b.

Open in App
Solution

Here, x5+ax4+bx3+cx2+dx+e=0 has real roots α1, α2, α3, α4, α5.
α1+α2+α3+α4+α5=αi=a
i<jαiαj=b (i)
(αi)2=a2 (ii)
α2i+2\left ( \sum_{i< j}\alpha _{i}\alpha _{j} \right )=a^{2}(iii)\Rightarrow \left ( \sum \alpha _{i}^{2} \right )=a^{2}-2b[fromEqs.(i),(ii)and(iii)]Asweknow,\displaystyle \left ( \frac{\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+\alpha _{4}^{2}+\alpha _{5}^{2}}{5} \right )\geq \left ( \frac{\alpha _{1}+\alpha _{2}+\alpha _{3}+\alpha _{4}+\alpha _{5}}{5} \right )^{2}(knownasTchebycheffsinequality)\Rightarrow 5\left ( a^{2}-2b \right )\geq a^{2}or4a^{2}\geq 10bor2a^{2}\geq 5b(forrealroots)Thus,if2a^{2}< 5b$ cannot all be real roots.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon