Concept of componendo
Given: a:b=c:d
⇒ab=cd
Multiply both sides by 67′ we get
⇒6a7b=6c7d
⇒6a+7b7b=6c+7d7d [using componendo]
⇒6a+7b6c+7d=7b7d
⇒6a+7b6c+7d=bd ⋯(i)
Concept of dividendo
∵ab=cd
Multiply both sides by 34′ we get
⇒3a4b=3c4d
⇒3a−4b4b=4c−4d4d [using dividendo]
⇒3a−4b3c−4d=4b4d
⇒3a−4b3c−4d=bd⋯(i)
from eq.(i) and (ii),we get
⇒6a+7b6c+7d=3a−4b3c−4d
∴(6a+7b)(3c−4d)=(6c+7d)(3a−4b)
Hence,proved.