If a,b,c denote the lengths of the sides of a triangle opposite angles A,B,C of a triangle ABC, then the correct relation among a,b,c,A,B and C is given by
A
(b+c)sin(B+C2)=acos(A2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(b−c)cos(A2)=asin(B−C2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(b−c)sin(B−C2)=acos(A2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(b−c)cos(A2)=2asin(B−C2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(b−c)cos(A2)=asin(B−C2) Take b=ksinB;c=ksinC;a=ksinA ∵b−ca=k(sinB−sinC)ksinA Using tranformation angle formulae, we get k(sinB−sinC)ksinA=2cos(B+C2)sin(B−C2)2sin(A2)cos(A2) We know that A+B+C=1800 ⇒B+C2=900−A2 ⇒cos(B+C2)=cos(900−A2)=sin(A2) Substituting cos(B+C2)=sin(A2) we get ∴b−ca=2sinA2sin(B−C2)2sinA2cosA2 =sin(B−C2)cosA2 ∴(b−c)cosA2=sin(B−C2)