wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π2, prove the following
sin2A+sin2Bsin2C=4cosAcosBsinC.

Open in App
Solution

WehaveA+B+C=πAissupplementangleofB+CsimilarilyBandCtoothersNow,sin2A+sin2Bsin2C=2sinAcosA+2sinBcosB2sinCcosC=2sin(B+C)cosA+2sin(A+C)cosB2sin(A+B)cosC=(2sinBsinC+2cosBsinC)cosA+(2sinAcosC+2cosAsinC)cosB(2SinAcosB+2cosAsinB)cosC=4cosBsinCcosA
Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon