If a,b,c ϵ R and the equations ax2+bx+c=0 and x3+3x2+3x+2=0 have two roots in common, then
We have , x3+3x2+3x+2=0
⇒ (x+1)3+1=0
⇒ ( x+1+1) {(x+1)2−(x+1)+1}=0
⇒ (x+2) (x2+x+1) = 0
⇒ x = -2 , −1±√3i2 ⇒ x = -2 , ω , ω2 .
Since a,b,c, ϵ R , ax2+bx+c=0 cannot have one real and one imaginary root. Therefore, two
common roots of ax2+bx+c=0 and x3+3x2+2=0 are ω,ω2 .
Thus, - ba=ω+ω2=−1
⇒ a = b and ca=ω,ω2=1 ⇒ c = a
⇒ a = b = c