wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If $a, b, c\in \mathbb{R}$ and equations \( ax^2 + bx + c= 0\) and \(2x^2 + 4x + 6 = 0 \) have a common root with $a + b + c = 18$, the value of \(a^2bc\) is

__

Open in App
Solution

Let \(ax^2+bx+c = 0 \) ........................(1)

\( 2x^2+4x+6 = 0 \) ..........................(2)

Since \( D = b^2 - 4ac = 16 - 4 \times 2 \times 6 \\
~~~~~~~~~~~~~~~~~~~~~~~= - 32 (-ve) \)

$\Rightarrow $Roots are imaginary

As the imaginary roots occurs in conjugate pairs. So, both the roots of the equation will be common.

So, \(\dfrac{a}{2} = \dfrac{b}{4}= \dfrac{c}{6} \)

$a : b : c = 1 : 2 : 3$

let $a = x$

$b = 2x$

$c = 3x$

$a + b + c = 18$

$x + 2x + 3x = 18$

$6x = 18\Rightarrow x = 3$

$\Rightarrow a = 3$

$\Rightarrow b = 6$

$\Rightarrow c = 9$

The value of \(a^2bc = 3^2 \times 6 \times 9\)

\(~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 9 \times 6 \times 9\)

$~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 486$


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Quadratic Equations with Both Roots Common
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon