If $a, b, c\in \mathbb{R}$ and equations \( ax^2 + bx + c= 0\) and \(2x^2 + 4x + 6 = 0 \) have a common root with $a + b + c = 18$, the value of \(a^2bc\) is
Let \(ax^2+bx+c = 0 \) ........................(1)
\( 2x^2+4x+6 = 0 \) ..........................(2)
Since \( D = b^2 - 4ac = 16 - 4 \times 2 \times 6 \\
~~~~~~~~~~~~~~~~~~~~~~~= - 32 (-ve) \)
$\Rightarrow $Roots are imaginary
As the imaginary roots occurs in conjugate pairs. So, both the roots of the equation will be common.
So, \(\dfrac{a}{2} = \dfrac{b}{4}= \dfrac{c}{6} \)
$a : b : c = 1 : 2 : 3$
let $a = x$
$b = 2x$
$c = 3x$
$a + b + c = 18$
$x + 2x + 3x = 18$
$6x = 18\Rightarrow x = 3$
$\Rightarrow a = 3$
$\Rightarrow b = 6$
$\Rightarrow c = 9$
The value of \(a^2bc = 3^2 \times 6 \times 9\)
\(~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 9 \times 6 \times 9\)
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 486$