If a,b,c∈R and equations ax2+bx+c=0 and 2x2+4x+6=0 have a common root with a+b+c=18, the value of a2bc is
Let ax2+bx+c=0 ........................(1)
2x2+4x+6=0 ..........................(2)
Since D=b2−4ac=16−4×2×6 =−32(−ve)
⇒Roots are imaginary
As the imaginary roots occurs in conjugate pairs. So, both the roots of the equation will be common.
So, a2=b4=c6
a:b:c=1:2:3
let a=x
b=2x
c=3x
a+b+c=18
x+2x+3x=18
6x=18⇒x=3
⇒a=3
⇒b=6
⇒c=9
The value of a2bc=32×6×9
=9×6×9
=486