If a,b,c∈R and the equations ax2+bx+c=0 and x3+3x2+3x+2=0 have two roots in common, then
a=b=c
We have , x3+3x2+3x+2=0
⇒ (x+1)3+1=0
⇒(x+1+1){(x+1)2−(x+1)+1}=0
⇒(x+2)(x2+x+1)=0
⇒x=−2,−1±√3i2
⇒x=−2,ω,ω2
Since a,b,c∈R , ax2+bx+c=0 cannot have one real and one imaginary root. Therefore, two
common roots of ax2+bx+c=0 and x3+3x2+2=0 are ω,ω2 .
Thus, −ba=ω+ω2=−1
⇒a=b and ca=ω,ω2=1 ⇒c=a
⇒a=b=c