If a,b,c∈R+, then limn→∞n∑k=1n(k+an)(k+bn) is equal to
A
1a−bln(b(b+1)a(a+1)) if a≠b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1a−bln(a(b+1)b(a+1)) if a≠b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
non-existent if a=b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1a(1+a) if a=b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D1a(1+a) if a=b limn→∞n∑k=1n(k+an)(k+bn) =limn→∞n∑k=1nn2(a+kn)(b+kn) =limn→∞n∑k=11(a+kn)(b+kn)⋅1n =1∫01(a+x)(b+x)dx =1a−b1∫0(a+x)−(b+x)(a+x)(b+x)dx =1a−b1∫0(1b+x−1a+x)dx =1a−b[ln(b+xa+x)]10 =1a−bln(a(b+1)b(a+1))
Now, if a=b, then we have limn→∞n∑k=11(a+kn)2⋅1n =1∫01(a+x)2dx =[−1a+x]10=1a(a+1)